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Multi-scale lidar measurements suggest
miombo woodlands contain substantially
more carbon than thought
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Miombo woodlands are integral to livelihoods across southern Africa, biodiversity in the region, and
the global carbon cycle, making accurate and precise monitoring of their state and change essential.
Here, we assembled a terrestrial and airborne lidar dataset covering 50 kha of intact and degraded
miombo woodlands, and generated aboveground biomass estimates with low uncertainty via direct
3Dmeasurements of forest structure. We found 1.71 ± 0.09 TgC was stored in aboveground biomass
across this landscape, between 1.5 and 2.2 times more than the 0.79–1.14 TgC estimated by
conventionalmethods. This difference is in part owing to the systematic underestimation of large trees
by allometry. If these results were extrapolated across Africa’smiombowoodlands, their carbon stock
would potentially require an upward revision of approximately 3.7 PgC, implying we currently
underestimate their carbon sequestration and emissions potential, and disincentivise their protection
and restoration.

Miombo woodlands, the dry tropical forests spanning large areas of
southern Africa, directly support many millions of livelihoods in various
ways including supply of plant-based materials, fertile soils for agriculture,
and grazing lands1. These ecosystems also hold cultural and spiritual sig-
nificance, provide habitat for substantial plant and animal biodiversity, and
regulate both the climate and water resources2. These landscapes, however,
are changing because of human activities, with cover reducing from
approximately 2.7 to 1.9 million km2 between 1980 and 20203. Owing to
both their importance and dynamic nature, it is therefore crucial tomonitor
how the world’s miombo woodlands are changing.

One essential climate variable that requires accurate and precise
monitoring is the aboveground biomass (AGB) and carbon stored in
these woodlands4. Any uncertainty that exists in the quantification of
these stocks has consequences, particularly regarding misinformed pol-
icy and decision making towards them, as well as the misallocation of
funding and resources5,6. Carbon markets for example, through

programmes such as Reducing Emissions from Deforestation and
Degradation (REDD+)7, require low uncertainty in estimates of carbon
stocks if they are to properly incentivise direct climate benefits, and co-
benefits including biodiversity and ecosystem services, by safeguarding
these woodlands. Further, intended outcomes from international climate
agreements towards greenhouse gas emissions reductions, such as the
Paris Agreement including individual countries’ Nationally Determined
Contributions, are premised on forest carbon accounting with low
uncertainty8. That is, both high accuracy and precision, quantitatively
expressed as a bias and variance, respectively, are usually important for
any estimate of forest AGB stocks in these contexts.Whilst accuracy is the
principal concern in accounting (systematic over- or under-estimation
commensurately misleads understanding of forest carbon sequestration
and emissions potential)9, precise estimates are also important, including
from the requirement to detect change over time (it can be problematic to
interpret differences between observations with low precision)10. This is
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particularly the case for miombo woodlands given the aforementioned
pace of their anthropogenic change.

The conventional approach to quantifying region-scale forest AGB
stocks across miombo woodlands, and forests generally, within the context
of UNFCCC- and IPCC-compliant greenhouse gas inventories, sees the
combination of activity data and emissions factors (EF): remotely sensed
estimates of forest area are multiplied by values of expected AGB per unit
area of forest11. These expected values, based on in-situ measurements,
might be generated fromNational Forest Inventories (NFI), or alternatively,
where such data are unavailable, taken from the literature, such as IPCC
defaults12. While this overall approach can be readily implemented it does
have limitations, including: (i) restricted ability to describe AGB variations
within forest types; (ii) EFs not being representative of the forest in question;
and (iii) failing todetect changebeyondbinary transition between forest and
non-forest (e.g. degradation).

For example, when focusing solely on the EF, and ignoring immediate
questions surrounding the representativeness of applying a single value to
any particular region of miombo woodland, uncertainties arise from the
methods used to gather the in-situ data from the forest plots underlying the
EFs themselves13. A ubiquitous feature of such measurements is the appli-
cation of allometric models to estimate individual tree AGB. These models
characterise the correlations that exist between tree shape and mass,
enablingAGBestimation frommore readily-measurable predictor variables
such as stem diameter and tree height14. Such allometrics are themselves
calibrated using hard-won destructive weighing measurements collected
froma limited number of harvested trees that thenmust represent the entire
variability of the specific taxa or region where that model is subsequently
applied.

Uncertainties in allometric-derived AGB predictions therefore arise
from the selection, measurement and modelling of these calibration trees,
and themeasurement of the predictor variables of any out-of-sample tree15.
Several studies have explored the precision of allometric predictions of
tropical and subtropical forests, where the expectation is that uncertainties
range from 10 to 40% of the estimate itself at the hectare-scale16,17. Research
has also explored their accuracy, with a particular focus on the selection and
modelling of allometric calibration data18, which are routinely heavily
skewed towards small trees owing to their relative ease of harvesting. It has
been hypothesised that this, combined with inadequate statistical methods,
might cause biased AGB predictions for underrepresented larger trees19.
Concurrently, independent lidar-based methods for AGB estimation have
shown large differences versus allometry, estimating up to 1.77 times greater
stocks at the plot-scale20. These potential uncertainties in allometric pre-
dictions are problematic as they would propagate directly into derived EFs
and their aforementioned applications.

Here, we present the first (to our knowledge) mapping of region-scale
AGB stocks generated entirely independent of the above conventional
methods, including activity data, EFs and allometrics, using 3Dmulti-scale
lidar (MSL) data acquired across 50 kha of forests in and around Gilé
National Park, Mozambique (Fig. 1). The continuous region of interest
(ROI) where these data were collected was selected such that it ranged from
intact forests, secondary forests in various states of degradation, through to
clearland, resulting in data that could reasonably be considered repre-
sentative ofmiombowoodland landscapesmorewidely.Across theROI, the
MSL dataset (approximately 450 billion measurements) comprised
helicopter-based airborne laser scanning (ALS) across its entirety, unoc-
cupied aerial vehicle laser scanning (UAV-LS) from six 300 ha sections, and
terrestrial laser scanning (TLS) and conventional forest inventory mea-
surements from six coincident 1 ha plots.

An inverted pyramid approach was used to estimate AGB stocks and
uncertainties across the ROI from these MSL data (Fig. 2), whereby each
layer calibrated the next, commencing with the TLS point clouds that
estimated individual tree AGB via both quantitative structural models
(QSMs) explicitly reconstructing whole-tree woody architecture and
volume21 (Fig. 3), and estimates of basic woody tissue density22. These
estimates were themselves calibrated and validated using a literature sample

of destructive measurements23. TLS-derived AGB was gridded and used to
train extreme gradient boosting machine learning models24 using predictor
variables retrieved from the UAV-LS point clouds that describe forest
structure25,26 (e.g., canopy height, tree fractional cover, and voxel occupancy
rates describing the 3D distribution of woody plant material), with the step
repeated to upscale to the ALS. The optimisation and performance of these
models was evaluated using spatial cross-validation methods27, with
meaningful confidence intervals capturing uncertainties arising from both
the QSM-derived training data and the upscaling itself, providing a robust
understanding of the uncertainty in AGB predictions.

These new MSL-derived AGB estimates provide insights into the
accuracy and precision of current best practices, and show that between 51
and 118% more AGB is stored across these miombo woodlands than con-
ventional methods suggest. This is first demonstrated at the tree-scale by
directly comparing TLS and allometric estimates for 1000+ trees (Fig. 3).
We then showhow these tree-level discrepancies, in part, translate into large
differences at the region-scale, by comparing MSL-derived AGB stocks
across the 50 kha ROI with counterparts estimated from both activity data
and EFs (Fig. 4), and more direct mapping methods, using AGB products
from theNASAGEDI spaceborne lidarmission28 (Fig. 5). In the discussion,
we explore the likelydrivers of these differences, and examine these results in
the context of miombo woodlands and global change more widely, parti-
cularly the consequences for their protection and restoration.

Results
Divergence between small and large trees
A total of 1071 individual trees were explicitlymatched in both the TLS and
inventory data, with their TLS-derived AGB summing to 462.0Mg, com-
pared with 450.8, 421.9, and 414.0Mg (2.5%, 9.5%, and 11.6% smaller,
respectively) predicted from two miombo woodland-specific and one
widely-used pan-tropical allometric models, respectively29,30 (Fig. 3b, c).
Approximately 50% of AGB was stored in the largest 115 trees by stem
diameter (i.e., 11% of trees). Here, the differences in AGB predictions
between bothmethods weremoremarked, summing to 232.0Mg vs. 215.0,
198.6Mg, and197.8Mg (7.9%, 16.9%and17.3%smaller, respectively). That
is, a systematic trendwasobservedwhereby allometric predictionsproduced
similar estimates for small trees, but smaller estimates for large trees.

Region-scale differences
MSL-derived AGB (Fig. 2c) across the ROI summed to 3.85 Tg ± 11.0%
(uncertainty expressed as 90% confidence intervals), with uncertainty at
individual pixel-level (10mresolution) averaging60.4%.ThisAGBestimate
reduced to 3.65 Tg, with average AGB density of 98.4Mg/ha when con-
sidering forested area only (37 kha, derived via a MSL-based forest/non-
forest mask defined as tree fractional cover greater than or equal to 30%
using a canopy threshold of 5m at 10m resolution31). Estimated AGB
densities were 99.2, 100.3, and 86.5Mg/ha for core park, buffer zone and
beyond, respectively. Conventional AGB estimates via activity data and EFs
ranged from 1.67 to 2.42 Tg (mean: 2.10 Tg) across the ROI (Fig. 4c),
generated using the same mask, and four representative EF values of 65.2,
62.2, 45.1, and 54.0Mg/ha (IPCCdefault for African subtropical dry forests,
Mozambique’s Forest Reference Emission Levels, and literature onmiombo
woodlands, respectively12,31–33).

Comparison with GEDI
Overall, there was some agreement betweenMSL- andGEDI-derivedAGB,
with mean densities of 78.1 and 68.5Mg/ha, respectively, for the 18,611
GEDI footprints available across the ROI, although it was observed that
MSL estimates were generally larger for densities greater than 50 Mg/ha
(Fig. 5b). These differences were explored by considering the African
deciduous broadleaf forests model underlying GEDI-derived AGB (pre-
dictor variables: aboveground relative heights)34, and simulating GEDI-
perceivedwaveformsandmetrics fromtheALSdata35. This provided insight
into the performance of this model, whose predictions were typically larger
for lower densities ( < 50Mg/ha) and vice versa for higher densities (Fig. 5c)
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compared to MSL counterparts. That is, the overall agreement was in part
owing to differences at high and low densities offsetting one another.

Discussion
Here, we presented the first region-scale mapping of forest AGB stocks
driven by direct 3D measurements of forest structure, independent of con-
ventional methods, including allometrics. Importantly, these estimates have
a credible estimate of uncertainty being 11.0% of the region-scale AGB
estimate itself. We note that even with these first-of-their-kind MSL mea-
surements capturing samples of the structure of each individual tree across

the 50 kha region, pixel-level (10m resolution) uncertainty frequently
exceeded 60% (averaging out to approximately 36% and 27% when aggre-
gating to 30 and 100m resolution, respectively). That is, these miombo
woodlands exhibit pronounced structural and woody tissue density varia-
tion, part of which remained uncaptured by either theMSL data themselves,
or more likely, the developed processing methods. These maps then, are
likely inappropriate for small-scale applications such as individual tree AGB
estimation36, but suitable for enabling accurate local and regional carbon
accounting through calibration and validation of Earth observation instru-
mentation such as GEDI, and the upcoming ESA BIOMASS mission37.

Fig. 1 | Multi-scale lidar across Gilé National Park, Mozambique.
aApproximately 450 billion laser scanning measurements were acquired in a 50 kha
region of interest (ROI) located across the southeast corner of the park, capturing
core area, buffer zone and beyond, such that the ROI encompassed intact miombo
woodlands through to clearland (CRS is EPSG:32737). Helicopter-based airborne
laser scanning (ALS) data were collected across its entirety, whilst slow-flying

unoccupied aerial vehicle laser scanning (UAV-LS) data were acquired across six
300 ha sections. Terrestrial laser scanning (TLS) and conventional inventory data
were collected in six 1 ha plots coinciding with these sections. b Location of Gilé
National Park in wider Mozambique. c Example of coincident TLS, UAV-LS and
ALS point clouds from a 10m2 section of forest (coloured by reflectance). Map data
© 2024 Microsoft.
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The principal insight from these MSL methods is that 51–118% more
AGB is stored across the ROI than predicted by conventional methods. A
key driver of these differences was observed at the tree-level, where TLS-
derived AGB estimates were systematically greater than allometric coun-
terparts for large trees. This was also reflected in the GEDI analysis, where
theAGBmodel forAfricandeciduous broadleaf forests34, itself underpinned
by allometry, generally predicted lower values than MSL-derived methods
for higherdensities ( > 50Mg/ha). The importance of this point ismagnified
when considering the disproportionate contribution of large trees to
upscaled AGB, as observed here (i.e., 11% of trees contributed greater than
50% of AGB across the six 1 ha stands) and described in literature38. We
cannot definitively state whether this is due to over- or under-estimation of
either method, or some mixture thereof, as accompanying destructive
harvest data were not acquired. However, our TLS-derived estimates were
calibrated using a representative sample of destructive measurements from
the literature23. The trend for allometric andTLSmethods to produce biased
and unbiased estimates for large trees, respectively, is consistentwith studies
where estimates from both methods were coincident with destructive
measurements across various forests39,40.

The cause of this potential systematic underestimation remains an
open question. One possibility however, is that all widely-used allometrics
are modelled via log-transformed linear regression41, and then applied to
trees of all sizes (oftentimes caveated that any given model should not be
used to predict an out-of-sample tree if its size falls outside the range of the
calibration data42). It is implicitly assumed then, that model parameters are
as equally suitable for large trees, as they are for small trees, within the
context of the accuracy of predictions. However, the underlying calibration
data are, as a rule, skewed towards smaller trees, oftennecessarily because of

the increasing difficulty of harvesting larger trees43. For example, for the
miombo woodland specific and pan-tropical models considered here29,30,
the median stem diameter of the 167 and 4004 trees comprising the cali-
bration data was 30 and 15 cm (mean: 35 and 24 cm), respectively. This
compares with a median and mean stem diameter of 48 and 50 cm for the
largest 10%of trees across the six 1 ha stands. The nature of linear regression
whereby each observation is usually assigned equal weight44, therefore
suggests these aggregate models are unlikely to be representative of large
trees, thus leading to biased predictions if this parameter invariance
assumption is invalid19. Owing to the aforementioned context of large trees
driving AGB distributions, and limited study on this subject15,18,20, an
argument from parsimony would be that large tree allometric predictions
are less certain than small tree estimates, unless proven otherwise.

The MSL methods used here provide capabilities to resolve this issue
and further enhance conventional methods. Whilst the airborne compo-
nents presented here are at a more experimental stage, TLS methods are
closer to operational readiness and less cost prohibitive. These data can be
collected from 1 ha plots, within days, using sampling protocols complying
with adopted good practices45. Data processing methods including seg-
mentation and structural modelling are complex, but substantial progress
has been made in recent years, particularly on both automation46, and the
avoidance of overestimating the volume of smaller trees and high-order
branches47. TLSmethods can be deployed in twoways:first, andmost direct,
estimating plot-scale AGB by summing contributions from individually
modelled trees. This, applied across NFI networks for example, would
enable updated EFs to be generated. Second, improving existing allometric
models by augmenting their calibration datasets48. The key here would be
generating uniform datasets (i.e., across tree size) through the addition of

Fig. 2 | Estimating forest aboveground biomass from multi-scale lidar. a TLS-
derived estimates of gridded AGB (10 m resolution) were generated for the six 1 ha
plots (Fig. 1a) via quantitative structural models describing the woody architecture
and volume of individual trees (Fig. 3a). b Upscaled AGB across the six 300 ha
sections was estimated through gradient boosting machine learning, using TLS
estimates as training data, andmetrics of forest structure retrieved from theUAV-LS
data as predictor variables. c This upscaling step was repeated to produce AGB

estimates across the ROI, and also shown here are the uncertainties associated with
each pixel prediction.Models were evaluated using spatial cross-validationmethods,
and uncertainty quantification captured components arising from both the
upscaling and the underlying TLS training data. d, e Examples of the predictor
variables generated from the UAV-LS and ALS point clouds including but not
limited to canopy height, tree fractional cover and voxel occupancy rates (a proxy for
the 3D distribution of woody volume).
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larger trees. This is appealing as it would both reduce the uncertainty in
highly-practicable allometric methods, and leverage the value of historic
datasets. However, appending calibration datasets with TLS-derived AGB
observations is non-trivial.Assumptions in linear regression include that the
mean of the distribution of error in the dependent variable (i.e., AGB) is
zero, and ideally errors are not autocorrelated or heteroscedastic44. There-
fore, such efforts require thoughtful undertaking.

Returning then to the region-scale predictions, while the divergence
between TLS- and allometric-derived AGB explains part of the overall
difference, they are also driven by the selected EFs. That is, these values are
not only underpinned by allometrics, but also the sampling pattern of their
underlying field plots, and how that differs from the composition of theROI
considered here.Thiswas partially unpicked by stratifying theROI into core
park, buffer zone and beyond, where it was observed that AGB densities
were still an increase of 75%, 77%, and 53% more than the mean of the
selected EFs. An important contributor here is the long-tail of large MSL-
derived AGB observations driven by aforementioned large trees (e.g., pre-
dictions greater than 150Mg/ha contributed 36% to the total 3.65 Tg), and
the statistical likelihood these would be undersampled by randomly dis-
tributed field plots.

The question remains then: what are the implications of these observed
differences in AGB stocks for our understanding of miombo woodlands?
That largely depends on the transferability of our results to the world’s 1.9
million km2 of these forests3. The ROI where data were collected was
deliberately positioned to capture as much of the range of states and suc-
cessions, and therefore variance inAGB, across the wider region as possible.
This capture of structural and taxonomic variation is illustrated by the
inventory measurements across the six 1 ha plots (Table S1), where stem
count, stem diameter and basal area ranged from 56 to 349, 10 to 75 cm and
1.9 to 20.9 m2/ha, respectively, and that 81 of the estimated 334 unique
species across miombo woodlands were observed, including from the
dominant Brachystegia and Julbernardia genera1. Further, tree fractional
cover across the 50 kha ranged from 0 to 1 with a mean of 0.59. These traits
coincide with the ranges observedmore widely across the continent49, so we

therefore suggest it is not unreasonable to consider these sampled forests as
being at least somewhat representativeofmiombowoodlandsmorebroadly.

Speculatively then, if we were to extrapolate our results across the
world’s miombo woodlands, they potentially store in the region of 3.7 PgC
more carbon in their AGB than currently estimated, assuming the mean of
the considered EFs (56.6 Mg/ha) is uplifted by 74% (assuming 47% carbon
content). It is alsonoteworthy thatMSLmethodsdetected anadditional 0.20
Tg AGB stored across the ROI in land classified as non-forest, potentially
increasing this delta still further, and emphasising that fragments of
miombo woodlands have the potential to store significant quantities of
carbon50.

Whilst such extrapolation requires additional data for confirmation,
themagnitude of this difference suggests our understanding of the role these
forests play in global change requires a rethink, considering this overall
increase is approaching the current annual global atmospheric increase (5.1
PgC/yr)51. That is, these forests could have amore potent ability to sequester
carbon from afforestation and reforestation efforts, albeit equally the
reverse, that their loss leads to increased emissions. Finally, an uplift in the
carbon density of these forests per unit area could correspond to a pro-
portional factor increase of 1.5 to 2.2 in their value on carbonmarkets, thus
better incentivising their protection and restoration, and disincentivizing
the value extracted from their deforestation52.

Materials and methods
Site description
The 50 kha region of interest (ROI) where data were collected (Fig. 1a) was
located on the southeastern border of Gilé National Park, Zambezia Pro-
vince, Mozambique. The forests here feature woodlands, riverine forests,
and wooded savannas, dominated by trees from the Brachystegia and Jul-
bernardia genera, characteristic of themore broad classification of miombo
woodland1.Mean annual precipitation is between 800 and 1000mm, with a
dry season May–October53. Mean monthly temperature varies from low
teens to high thirties, the terrain is largelyflat, and soils comprise sandy loam
and sandy clay54.

Fig. 3 | Deviations between large tree aboveground biomass estimates from
terrestrial laser scanning and allometry. a Illustration of one quantitative structural
model derived from the TLS point clouds (here of a Pterocarpus angolensis) that,
coupled with species-specific basic woody tissue density, enables estimation of tree-
scale AGB. b The cumulative distribution of TLS- and allometric-derived AGB
across the 1,071 trees matched in both the TLS and inventory data across the six 1 ha
plots (Fig. 1), ordered by decreasing stem diameter. Allometric estimates were
generated from three appropriate models: two miombo woodland specific models29

(predictor variables: stem diameter only [red], and stem diameter and tree height
[orange]) and a pan-tropical allometry30 (predictor variables: stem diameter, tree
height and basic woody tissue density [purple]). c Summed AGB estimates across
these trees, whereby the percentage decrease between TLS- and allometric estimates
is shown. The dotted lines show the contribution to AGB from the 115 largest trees
(by stem diameter), where it can be seen that: (i) these ~11% of trees contributed
~50% of summed AGB, and (ii) allometric estimates were systematically smaller
than TLS counterparts.
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Study design
The ROI was positioned such that it covered core park, buffer zone and
beyond (Fig. 4a). The dataset (Fig. 1a) comprised airborne laser scanning
(ALS) data across the entirety of the ROI (designation: GIL), unoccupied
aerial vehicle laser scanning (UAV-LS) data from six 300 ha sections (des-
ignation: GIL01 to GIL06), and terrestrial laser scanning (TLS) measure-
ments and inventory data from six 1 ha plots coincident with these sections
(designation: GIL01-01 to GIL06-01). These sections and plots were stra-
tegically located to capture variations in forest state, succession, structure,
and taxonomy across the ROI.

Data collection
Data were acquired between June-November 2022. The six 100 × 100m
planimetric plots were established and inventoried using RAINFOR
protocol55. Measurements of each tree inside these plots with stem dia-
meter ≥ 10 cm included: (i) stem diameter via a circumference/diameter
tape, (ii) point of measurement of the stem diameter (either 1.3m above

ground or 0.5m above-buttress), (iii) taxonomic identity determined by a
single trained botanist, and (iv) x-y coordinates using eye-estimation.

TLS datawere collected inGIL01-01 throughGIL06-01 using a RIEGL
VZ-400i laser scanner. Sampling followed established protocol56. That is, in
accordance with the CEOS Aboveground Woody Biomass Product Vali-
dation Good Practices Protocol45. In particular, scans were acquired from
121 locations at 10m intervals across each plot, with upright and tilt scans
acquired at each location to capture a complete sample of the scene. The
instrument pulse repetition rate was 300 kHz and the angular step between
sequentially fired pulses was 0.04 degrees. The laser pulse had a wavelength,
pulse width, beam divergence and exit footprint diameter of 1550 nm,
3.0 ns, 0.30mrad, and 7.0 mm, respectively. Coarse georeferencing of scans
was generated from an onboard GNSS receiver obtaining real-time differ-
ential corrections from a nearby static Emlid Reach RS2 GNSS receiver.

UAV-LS data were acquired across GIL01 through GIL06 using a
RIEGL VUX-120 and Trimble Applanix APX-20 GNSS/INS kinematic
laser scanning system mounted on a hybrid-electric drone, in a 50m

Fig. 4 | Multi-scale lidar predicts consistently lar-
ger aboveground biomass stocks across these
miombo woodlands than conventional methods
using activity data and emissions factors. aMSL-
derived forest/non-forest map across the 50 kha
region of interest, overlaid on the boundaries of Gilé
National Park, generated by thresholding tree frac-
tional cover greater than or equal to 30% using a
canopy threshold of 5 m at 10 m resolution.
b Distribution and mean (green) of MSL-derived
aboveground biomass density predictions (Fig. 2)
for pixels considered forested, versus a representa-
tive selection of four EFs (red, orange, purple and
blue) taken from IPCC defaults, Mozambique’s
Forest Reference Emission Levels, and literature on
miombo woodlands12,31–33. c Summed AGB stocks
across the ROI (including uncertainty in the MSL-
derived estimate), whereby these EFs were com-
bined with the FNFmap. It is observed that theMSL
approach estimated AGB stocks between 51 and
118% larger than these conventional methods, with
amean increase of 74%.Map data © 2024Microsoft.
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double-gridded configuration at 5.0 m/s velocity with an aboveground level
of 100m. The instrument pulse repetition rate, field of view and scan rate
were 1800 kHz, 90 degrees and 315 lines per second, respectively. The laser
pulse had a wavelength, pulse width, beam divergence and exit footprint
diameter of 1550 nm, 3.0 ns, 0.38mrad and 5.7mm, respectively.

ALS data were acquired across GIL using the same kinematic laser
scanning system mounted on a helicopter, in a 127m spaced parallel line
configuration at 41.2m/s velocity with an aboveground level of 160m. In
this configuration, the pulse repetition rate, field of view and scan rate were
1200 kHz, 100degrees and396 lines per second, respectively.Anearby static
Stonex S900A GNSS receiver collected observables throughout UAV-LS
and ALS data acquisition for georeferencing purposes.

Data preprocessing
Inventory data (1406 trees) were manually digitised from field sheets, with
accuracy assessed via a second operator digitising a randomly selected 5%
subset. Errors in taxonomic identity were resolved using the Taxonomic
Name Resolution Service57. Estimates of basic woody tissue density were
derived from the mean of entries available in the Global Wood Density
Database58, whereby attribution was made if possible at the species-, or else
genus-level (84.4 and 14.2% of the trees, respectively). If no taxonomic
attribution could be made, basal area-weighted plot average wood densities
were used (1.4%).

TLS data were co-registered into georeferenced (EPSG: 32737) tiled
point clouds (Fig. 1c) using RIEGL RiSCAN Pro (v2.15) via its Automatic
Registration 2 and Multi Station Adjustment 2 modules. Airborne mission
trajectories were refined to survey-grade accuracy and precision via
Applanix POSPac UAV (v8.8) using GNSS observables from the base sta-
tion, whose absolute positioning was refined using the AUSPOS service59.

Lidar data were united with these trajectories and merged into georefer-
enced tiled point clouds (Fig. 1c) using RIEGL RiPROCESS (v1.9.2.2)
including its RiUNITE (v1.0.3.3) and RiPRECISION (v1.4.2) modules. TLS
point cloud georeferencing was refined by aligning with the UAV-LS data
using an iterative closest point algorithm implemented in CloudCompare
(v2.12.4). Noise in TLS, UAV-LS and ALS point clouds was labelled using
reflectance and deviation thresholding60, and statistical outlier filtering.
Incompletely sampled tiles were discarded based on point density and
morphological erosion.

Data processing
TLS-derived tree-scale aboveground biomass (AGB) estimates were gen-
erated in six steps. First, point clouds representing individual trees either
inside, or part of whose AGB fell inside the plot, were segmented from the
tiled point clouds (1,339 trees). This was undertaken both manually in
CloudCompare (v2.12.4) andusing theForest StructuralComplexityTool46.
Second, point clouds were manually linked with inventory data via stem
maps, whereby due to edge effects around the plot (i.e. trees with stem base
inside but crown partly growing outside the plot, and vice versa) andmulti-
stemmed trees, there were somewhat fewer point clouds than census entries
(1339 vs 1406 respectively). Third, leafy material, which had distinctively
lower apparent reflectance than the woody material, was segmented from
point clouds via thresholding based on evaluating single-tree reflectance
histograms. Fourth, quantitative structural models (QSMs) (Fig. 3a) were
constructed for woody point clouds using TreeQSM21 (v2.4.1). QSMs were
inspected by eye, and validated via comparison to the input point clouds
(i.e., point-to-cylinder distances). Fifth, potential overestimations of small
branch volume arising from wind, co-registration error, properties of the
laser pulse itself, or some mixture thereof, were negated using a post-

Fig. 5 | Comparison between aboveground bio-
mass estimates from multi-scale lidar and the
GEDI spaceborne lidar mission. a Illustration of
the 18,611 GEDI footprints available across the ROI
overlaid on the MSL-derived predictions (Fig. 2).
b Comparison between AGB density estimated via
MSL and GEDI methods for these footprints. GEDI
estimates are derived from a model for deciduous
broadleaved trees in Africa (DBT.Af) using above-
ground relative heights as predictor variables34. It is
observed that MSL predictions are generally larger
for densities greater than 50Mg/ha. cThis difference
was examined by simulating GEDI waveforms and
retrieving GEDI-perceived relative height metrics
from the ALS data35, that were subsequently used to
generate estimates of AGB density from the DBT.Af
model. This subplot compares these estimates with
MSL-derived AGB, whereby they are typically larger
for lower densities and smaller for higher densities.
That is, the agreement between MSL- and GEDI-
derived AGB is part owing to these differences off-
setting one another. Both scatter plots comprise an
identity line (green), linear regression with free
intercept (black) and statistics including con-
cordance correlation coefficient (CCC), and root
mean square difference (RMSD).
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processing step based on metabolic scaling theory61. This limited the max-
imum diameter of third order and above branches to half the diameter of
their parent, and the diameter of cylinders intra-branch to no more than
their parent. This was validated by comparing open-access data from pre-
vious studies where destructive data were available23. Sixth, AGB was esti-
mated fromQSM-derived volume and basic woody tissue density, the latter
obtained from the established link between point clouds and inventory data.

Metrics describing forest structure (Fig. 2d, e) were generated from
the UAV-LS and ALS point clouds at 10m resolution unless stated other-
wise. The metrics, described in25, and retrieved using methods similar to
those implemented in lidR62, comprised: digital terrain and canopy height
models (1m), relative height, tree fractional cover, canopy height rugosity,
fixed and variable gap fraction, canopy closure, canopy ratio, z-entropy,
skewness and kurtosis. Additionally, voxel-based metrics describing the 3D
distribution of woody plant material were also retrieved26. This was
undertaken by segmenting leafy material via reflectance thresholding, and
partitioning the UAV-LS and ALS point clouds into voxels with 0.1 and
0.5m edge length, respectively. Volumes of each voxel comprising at least
one point were then aggregated in 3D grids of 1m and 5m resolution,
respectively.

Aboveground biomass modelling
TLS-derived gridded estimates of AGB across GIL01-01 through GIL06-01
(Fig. 2a) were estimated by constructing a georeferenced 10mgrid across
each plot, decomposing each QSM into its constituent cylinders, and allo-
cating volume to respective cells. Numerical approximation estimated the
quantity of intra-cylinder volume assigned to multiple cells. Cells were
considered valid only when all AGB from trees with stem diameter ≥10 cm
was captured. This included contributions from trees outside the plot whose
stem or crown only partially fell inside the cell in question. For such trees,
QSMs were produced with the encroaching cylinder volumes attributed to
the relevant cell, assuming a wood density equal to the plot basal area-
weighted wood density. In total, 568 cells, of which 473 were non-zero, were
created with biomass contributions from 1,259 QSMs.

Gridded estimates of AGB (10m resolution) across GIL01 through
GIL06 (Fig. 2b) were retrieved using extreme gradient boosting machine
learning via XGBoost63 (v1.6.2), which has previously been applied to AGB
modelling24. The TLS-derived gridded estimates of AGB were used as
training data, and the spatially coincident UAV-LS-derived forest structure
metrics were used as predictor variables. The choice of metric and the
producedbiomassmap resolution (10m)was informedbybalancinghaving
plentiful training pixels (i.e. higher resolution) versus the information
contained within each pixel to predict biomass, using a rule of thumb that
there be at least ten times more training pixels than features. Optimised
hyperparameters and feature selection were found by minimising the root
mean square error of validation folds within a spatial cross-validation
framework27 usingGIL01-01 throughGIL06-01 as separate folds. For this, a
random grid search of the following six hyperparameters was undertaken:
(i) learning rate (a step shrinkage weight; used tomake the boosting process
more conservative and reduce the risk of overfitting); (ii) minimum loss
reduction (a decision parameter to make a partition on a leaf node of the
tree); (iii) maximum depth of a tree (a proxy for the complexity, and hence
overfitting risk, of themodel); (iv)minimumchildweight (minimumsumof
the hessian required in each child,withhigher values again resulting inmore
conservative models); (v) subsample of the training instances (fraction
sampled from the training data prior to tree growing); and (vi) column
sampling ratio (fraction of the features to be subsampled). Further perfor-
mancemetrics were also generated, including bias, and two based on the log
of the accuracy ratio: (i) median symmetric accuracy, and (ii) symmetric
signed percentage bias. These two metrics are well-suited to assessing pre-
dictions potentially spanning several orders of magnitude64.

Gridded estimates of AGB (10m resolution) across GIL (Fig. 2c) were
retrieved by repeating this step, where the UAV-LS-derived gridded esti-
mates of AGB were the training data, and the spatially coincident ALS-
derived forest structure metrics were the predictor variables. Fig. S1 and

Fig. S2 present cross-validation statistics, the weight and gain assigned to
each predictor variable, and scatter plots illustrating predicted versus
reference AGB, for the UAV-LS and ALS models, respectively.

A direct TLS-to-ALS upscalingmodelwas also tested (i.e., skipping the
intermediate UAV-LS layer). The direct model was slightly more biased
(cross-validation bias with TLS labels: −3.63%) and less accurate (cross-
validation RMSE with TLS labels: 62.6 Mg/ha), thus not considered further
in this study. Further methodological improvements to the MSL workflow
could encompass more sophisticated lidar features, perhaps tailored to the
extremehigh point density ofUAV-LS, that are likely to correlatemorewith
AGB than the ones used in our study. Additionally, spatially explicitmodels,
such as convolutional neural networks, can take into account spatial context
rather than only the pixel values themselves. Here, spatial information is
only used in the cross-validation of the XGBoost models.

Uncertainty quantification
Uncertainty inTLS-derived tree-scaleAGBarises from the underlyingpoint
cloud itself, quantitative structuralmodelling andbasicwoody tissue density
estimation43. Uncertainty from these sources was implicitly captured by
modelling the expected distribution of error using existing data where TLS-
derived AGB estimates were available alongside reference measurements
derived from destructive harvesting and weighing (391 trees from
111 species)23. To increase the representativity of these harvested trees to the
ROI, the dataset was subsetted to contain only trees with stem diameter
<75 cm, scanned in leaf-on conditions, and to exclude trees fromboreal and
temperate regions (n = 174). The error distribution was modelled via the
mean and variance of residuals, as a function of stem diameter, using linear
and non-linear quantile regression, respectively. The appropriate mean
residual was subtracted from the raw AGB estimate for each tree to remove
bias known to arise in TLS-derived volume estimates, especially in smaller
branches47, complementing the QSM postprocessing based on metabolic
scaling. Uncertainty in TLS-derived gridded AGBwas derived as a volume-
weighted combination of tree-scale AGB uncertainty, bymodelling the true
AGBof each tree as following aGaussiandistributiondependent on its TLS-
estimated AGB, and independent of all other trees. This assumption of
independence refers only to effects causing a discrepancy between TLS-
estimated AGB and true AGB (i.e., imperfections in lidar scanning, QSM
reconstruction and wood density assignment) and does not neglect spatial
correlation of true AGB (e.g., arising from the effect of trees on each other),
which is inherited by TLS-estimated AGB, but remains an approximation
since spatial correlation may exist in some residual effects such as wind
noise. Consequently, the only modelled source of covariance is due to a
given tree spanningmore than one pixel. This enabled calculation of the full
pixel covariance matrix, capturing both the marginal uncertainty in each
pixel and the correlation between pixels.

Uncertainty in UAV-LS-derived gridded estimates of AGB was mod-
elled as the sumof two independent components:measurement variance and
model variance. Measurement variance was estimated using a Monte Carlo
random sampling approach. 100 samples of each of the six TLS-derived
gridded AGB estimates were generated from their underlying multivariate
Gaussian distribution, described above. Each set of six gridded AGB esti-
mates was used to train a separate XGBoost model, producing 100 gridded
predictions of AGB for each UAV-LS section, the sample variance across
whichwas taken as themeasurement variance, per pixel.Model variancewas
estimated as a zero-intercept linear function of predicted pixel AGB, with
slope calibrated from the cross-validation data described in the previous
section. Uncertainty in ALS-derived gridded estimates of AGB (Fig. 2c) was
estimated by repeating this process, using the 100 UAV-LS-derived gridded
AGBestimates as trainingdata to a further ensembleof 100XGBoostmodels.
Uncertainty is expressed as 90% confidence intervals throughout.

Conventional methods
Allometric-derived tree-scale AGB estimates were produced by three allo-
metricmodels. Thesemodels are widely used for carbon stock estimation in
the region. First, the pan-tropical allometry described in30 that considers the
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predictor variables stem diameter, tree height and basic woody tissue den-
sity, itself calibrated from the harvest of 4,004 trees across the tropics and
subtropics. Second, two miombo woodland specific allometries described
in29, themselves calibrated from the harvest of 167 trees in Tanzania, that
consider: (i) stemdiameter only, and (ii) stemdiameter and tree height. Tree
height was derived fromTLS data. Individual treeswith non-matching stem
diameters between the inventory and TLSwere excluded from the tree-level
AGB comparison (i.e., stem diameters with >5 cm difference; n = 188) to
ensure potential errors in linking both data sets were omitted.

A selection of four representative emission factors (EFs) were gathered
to enable conventional region-scale estimation of AGB. We used values
from: (i) the IPCC default for African subtropical dry forest described in12

(using a combination of L- and C-band radar); (ii) Mozambique’s Forest
Reference Emission Levels31 for semi-deciduous forest including Miombo
(based on the country’s National Forest Inventory and the allometrics
described in29); (iii) specific to Zambezia province described in32 (obtained
from L-band radar and a network of forest plots using the allometrics of30);
and (iv)Mozambique-widedescribed in33 (destructive harvesting coupled to
27 ha forest inventory).

Comparison with GEDI
GEDI L2A (version 2) and L4A (version 2.1) products (i.e., relative height
metrics and AGB density, respectively) were downloaded from NASA’s
Earthdata65. These data were filtered to only include observations between
day-of-year 275 and 365 (to match seasonality) from the years 2018–2022,
with a sensitivity greater than 90%, spatially overlapping with the ALS data,
and with 98% relative heights under 35m. This resulted in 18,611 GEDI
observations (Fig. 5a) from the available 72,101. Coincident MSL-derived
AGBD was retrieved by simulating a circle at the GEDI footprint coordi-
nates (12.5m radius), and performing a weighted average extraction from
the gridded 10m resolution lidar-derived AGB predictions. No geospatial
aligning of GEDI footprints with the ALS data was applied.

Additionally, we tested the influence of the AGBmodel underpinning
GEDI’s L4 product in the region (i.e. the African dry broadleaf forest model
(DBT.Af)34). Since relative heights retrieved from the ALS data (calculated
from the height distributions within a point cloud) are not comparable to
GEDI-derived relative height (derived from a waveform from a single laser
pulse), we simulated the ALS data into GEDI-perceived waveforms for
10,000 randomly distributed 25m diameter point cloud sections within the
ROI using gediRat35. These resulting simulated waveforms were directly
comparable with GEDI’s waveforms and thus were used as input to GEDI’s
DBT.Af model, to predict AGBD.

Data availability
Gridded estimates of AGB and its uncertainty (10m resolution) from the
TLS, UAV-LS and ALS data, and gridded metrics of forest structure (10m
resolution) from the UAV-LS and ALS data, for the section GIL04, and the
data to produce the graphs and charts, are available at https://doi.org/10.
5281/zenodo.11072918. These data are distributed under the terms of the
Creative Commons Attribution-NonCommercial 4.0 International License
(CC BY-NC 4.0).

Code availability
Semantic and instance segmentation was undertaken using a modified
version of FSCT 46. Quantitative structural models were generated using a
modified version ofTreeQSM21. Forest structuremetricswere retrieved via a
C++ implementation of lidR62. Extreme gradient boosting models were
constructed using XGBoost63. These underlying packages are available at
https://github.com/SKrisanski/FSCT, https://github.com/InverseTampere/
TreeQSM, https://github.com/r-lidar/lidR and https://github.com/dmlc/
xgboost, respectively.
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